طالب
المحاسبة, جامعة تشرين

قدم الفيزيائي الفرنسي لويس دي برولي أطروحته البحثية عام 1924 والتي اقترح فيها بأن للإلكترونات خصائص تتشابه مع خصائص الموجات وخصائص الجسيمات، تمامًا كما هو الحال مع الأشعة الضوئية، قام دي براولي من خلال فرضيته بإعادة ترتيب كافة شروط علاقة أينشتاين-بلانك وفرض تطبيق هذه الشروط على كافة أنواع المادة.

تركز المعادلة التي قام دي براولي بطرحها على وصف خصائص الموجات الخاصة بالمادة، وبالأخص طبيعة الأمواج الخاصة بالإلكترون، والمعادلة كالتالي: λ = h/mv، بحيث:

  • λ هو الطول الموجي (wavelength).
  • h هو ثابت بلانك (Planck’s constant).
  • m هي كتلة الجسيم (mass of a particle).
  • v وهي سرعة حركة الجسيم (velocity).

حيث اقتراح دي براولي أن هذه الجسيمات يمكن أن تُظهر خصائص تشاهد عادةً في الموجات، تم التحقق من صحة الأطروحة التي افترضها برولي لاحقًا من خلال دراسات موجات المادة في تجربة العالم جورج باغيت طومسون (George Paget Thomson)ٍ في انحراف أشعة الكاثود (cathode ray diffraction) وتجربة دافيسون غيرمر (Davisson-Germer) والتي تم تطبيقها بشكلٍ خاص على الإلكترونات، ومنذ ذلك الحين تم تطبيق معادلة دي برولي على العديد من الجسيمات كالجسيمات الأولية (elementary particles) والذرات المحايدة (neutral atoms) والجزيئات (molecules).

طور دي برولي نظريته انطلاقًا من نظرية آينشتاين حول الفوتونات التي أثبتت صحته، ليطرح نتيجة ذلك العديد من التساؤلات حول إذا ما كانت النظرية تنطبق فقط على الشعاع الضوئي فقط، أم أن جميع الأشياء المادية تظهر سلوكًا يشبه الأمواج.

 فقد اقترح دي برولي أن علاقة اينشتاين التي تحدد العلاقة بين طول الموجة والعزم، نستطيع تطبيقها على كافة المواد: تمثل هذه العلاقة بالشكل التالي:

lambda = h / p

حيث h هو ثابت بلانك.

يسمى الطول الموجي في هذه الحالة بالطول الموجي لدي برولي، الذي اختار معادلة الزخم لاينشتاين على معادلة الطاقة كأساسٍ لفرضيته، كونه لم يستطع تحديد نوع الطاقة المستخدم مع المادة، فهل يستخدم الطاقة الإجمالية، أو الطاقة الحركية، أو الطاقة الإجمالية النسبية، فجميع هذه المقادير تكون متساويةً بالنسبة للفوتونات، أما فيما يتعلق بالمواد فتختلف المقادير عن بعضها، ما سيعطي نتائج مختلفة في كل مرة.

فإذا ما افترضنا أن علاقة الزخم السابق سمحت باشتقاق علاقة دي برولي بشكلٍ جديد لتردد الموجات f، باستخدام الطاقة الحركية Ek، ستظهر المعادلة حينها على الشكل التالي:

f = Ek / h

ساعدت أطروحة العالم دي برولي في إثبات أن الازدواجية بين الجسيمات والموجات لم تكن فقط سلوكًا خاطئًا للضوء، بل على العكس تمامًا، كانت مبدءًا أساسيًا تم إظهاره من قبل الإشعاع والمادة، وعن طريق إثبات صحة الفرضية التي طرحها دي برولي أصبح بالإمكان تطبيق المعادلات الخاصة بالأمواج في تفسير الظواهر التي تصيب المادة، وتفسير سلوك هذه المواد.

كان لنظرية دي برولي أثرٌ كبير على تطور ميكانيكا الكم، إذ تعتبر هذه الأطروحة واحدةً من الأسس التي بني عليها هذا العلم، كما أن لأطروحة دي برولي أهمية كبيرة في العديد من التطبيقات الفيزيائية، إذ تعتبر النظرية جزءًا لا يتجزأ من نظرية التركيب الذري (theory of atomic structure)، وفيزياء الجسيمات (particle physics).

على الرغم من أن فرضية دي برولي تنص على إمكانية التنبؤ بالأطوال الموجية لأي مادة مهما بلغ حجمها، تبقى هنالك حدود قصوى ودنيا تنعدم الفائدة عندها من هذه الفرضية.

أكمل القراءة

216 مشاهدة

0

هل لديك إجابة على "ما هو مبدأ دي براولي"؟